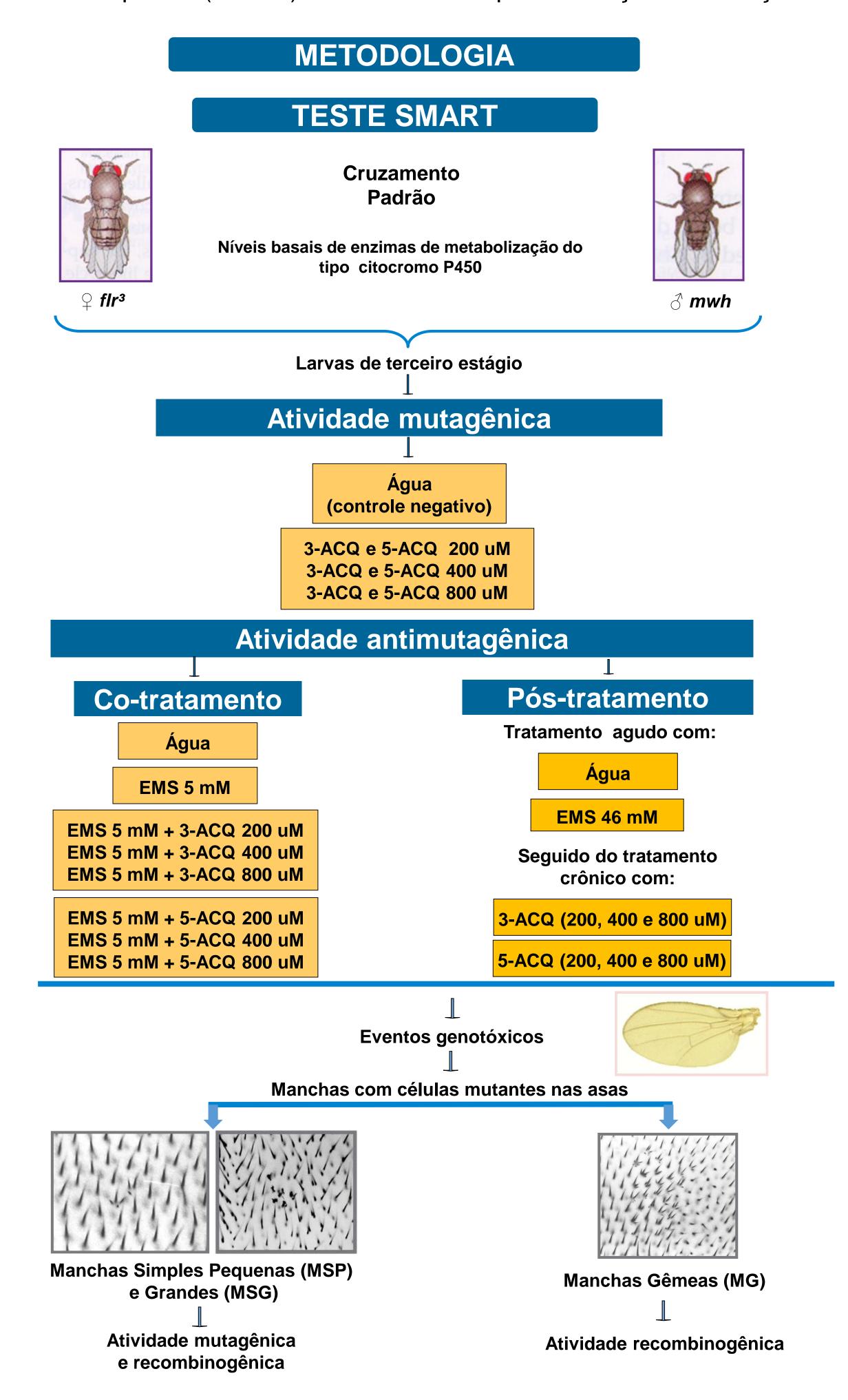
2º COLÓQUIO ULBRA DE EXTENSÃO, PESQUISA E ENSINO

2° ENCONTRO ULBRA DE BOLSISTAS CNPQ E FAPERGS

ESTUDO DA ATIVIDADE MUTAGÊNICA E ANTIMUTAGÊNICA DOS ÁCIDOS CLOROGÊNICOS 3-ACQ E 5-ACQ EM CÉLULAS SOMÁTICAS DE *Drosophila melanogaster*


^{1,2}Lucía Paola Facciola González, ²Idna de Carvalho Barros, ²Rafael Rodrigues Dihl, ²Mauricio Lehmann

¹Bolsista de IC PIBIT/CNPq, Graduanda do Curso de Biologia, ULBRA Canoas-RS.

²Laboratório de Toxicidade Genética (TOXIGEN), PPG em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil, ULBRA, Canoas, RS. mauriciol@ulbra.br

INTRODUÇÃO E OBJETIVO

Ácido clorogênico é a nomenclatura utilizada para identificar o grupo de ésteres mais abundantes contidos na dieta humana. Eles são formados a partir da reação de esterificação entre compostos fenólicos denominados ácidos transcinâmicos (*p*-cumárico, ferúlico e cafeico) com o ácido quínico. Além de abundantes no café, podem ser encontrados na erva mate, ameixa, maçã e na batata. Estes compostos integram o grupo dos fenóis antioxidantes e atuam em diversos sistemas biológicos, sendo associados a atividades antitumoral, analgésica, antimicrobiana, antioxidante, antiaterosclerose e antidiabetes. O presente estudo tem como objetivo avaliar a atividade mutagênica e antimutagênica dos ácidos clorogênicos 3-*O*-cafeoilquínico (3-ACQ) e 5-*O*-cafeoilquínico (5-ACQ) através do teste para detecção de Mutação e Recombinação Somática (SMART) em *D. melanogaster*.

DISCUSSÃO

Os resultados obtidos até o presente momento mostram que: (i) o 3-ACQ e o 5-ACQ não exerceram atividade mutagênica nas concentrações testadas (200, 400 e 800 µM) (Tabela 1); (ii) reduziram significativamente a atividade genotóxica do EMS (5 mM) no protocolo de co-tratamento nas concentrações de 200 e 800 µM (Tabela 2), assim como (iii) foram capazes de reduzir a frequência de danos genéticos induzidos pelo EMS (46 mM) no sistema de pós-tratamento nas três concentrações utilizadas (Tabela 3).

Ainda que preliminares, os dados apontam para um efeito protetor dos ácidos clorogênicos 3-ACQ e 5-ACQ sobre danos químicos induzidos no DNA e que esta proteção pode estar associada não apenas com a atividade antioxidante, já descrita na literatura científica (Sortibrán et al., 2011), mas também com a potencialização dos mecanismos de reparação do DNA.

RESULTADOS

Tabela 1. Resultados obtidos no teste SMART com a progênie *mwh/flr*³ do cruzamento padrão após exposição crônica de larvas de 3º estágio aos compostos 3-ACQ e 5-ACQ nas diferentes concentrações.

Genótipos	Nº de	Manchas por	Total			
e Conc.	Indiv.	MSP	MSG	MG	TM	manchas
(mM)	(N)	(1-2 céls) ^b	(>2 céls) ^b			mwh ^c
		<i>m</i> = 2	m = 5	m = 5	m = 2	(n)
5-ACQ						
Controle negativo	30	0,63 (19)	0,10 (03)	0,07 (02)	0,80 (24)	24
5-ACQ 200 μM	30	0,97 (29) i	0,17 (05) i	0,03 (01) -	1,17 (35) i	35
5-ACQ 400 μM	30	0,50 (15) -	0,10 (03) -	0,03 (01) -	0,63 (19) -	19
5-ACQ 800 μM	30	0,70 (21) -	0,03 (01) -	0,00 (00) -	0,73 (22) -	22
3-ACQ					-	
Controle negativo	30	0,63 (19)	0,10 (03)	0,07 (02)	0,80 (24)	24
3-ACQ 200 µM	30	0,37 (11) -	0,03 (01) -	0,03 (01) -	0,43 (13) -	13
3-ACQ 400 µM	30	0,43 (13) -	0,00 (00) -	0,10 (03) i	0,53 (16) -	16
3-ACQ 800 µM	30	0,50 (15) -	0,10 (03) -	0,00 (00) i	0,60 (18) -	18

^aDiagnóstico estatístico de acordo com Frei e Würgler (1988): +, positivo; −, negativo; i, inconclusivo, quando comparado ao controle negativo. ^bIncluindo manchas simples *flr*³ raras. ^cForam considerados apenas os clones *mwh* das manchas simples *mwh* e das manchas gêmeas.

Tabela 2. Resultados obtidos no teste SMART com a progênie *mwh/flr*³ do cruzamento padrão após exposição crônica de larvas de 3º estágio ao **co-tratamento** do 3-ACQ e 5-ACQ com EMS (5 mM)

Genótipos	Nº de	Manchas por indivíduo (nº de manchas) diag. estatístico a				
e Conc.	moscas	MSP	MSG (>2 céls) ^b m = 5	MG	TM m = 2	manchas mwh ^c (n)
(m M)	(N)	(1-2 céls) ^b				
		m = 2		m = 5		
5-ACQ						
Controle negativo	30	0,63 (19)	0,10 (03)	0,07 (02)	0,80 (24)	24
EMS 5 mM	30	58,63 (1759) *	20,20 (606) *	10,30 (309) *	89,13 (2674) *	2589
EMS 5 mM + 5-ACQ 200 μM	30	55,10 (1653) f+	19,27 (578) -	10,63 (319) -	85,00 (2550) f+	2442
EMS 5 mM + 5-ACQ 400 μM	30	58,97 (1769) -	19,80 (594) -	10,63 (319) -	89,40 (2682) -	2579
EMS 5 mM + 5-ACQ 800 μM	30	53,37 (1601) f+	18,57 (557) -	9,90 (297) -	81,83 (2455) f+	2331
3-ACQ						
Controle negativo	30	0,63 (19)	0,10 (03)	0,07 (02)	0,80 (24)	24
EMS 5 mM	30	58,63 (1759) *	20,20 (606) *	10,30 (309) *	89,13 (2674) *	2589
EMS 5 mM + 3-ACQ 200 μM	30	53,07 (1592) f+	16,60 (498) f+	10,00 (300) -	79,67 (2390) f+	2305
EMS 5 mM + 3-ACQ 400 μM	30	54,47 (1634) f+	20,57 (617) -	11,13 (334) -	86,17 (2585) -	2460
EMS 5 mM + 3-ACQ 800 μM	30	44,23 (1327) f+	20,40 (612) -	13,03 (391) f+	77,67 (2330) f+	2197

^aDiagnóstico estatístico de acordo com Frei e Würgler (1988): *, positivo quando comparado ao controle negativo; \neg , negativo; f+, fraco-positivo; +, positivo, quando comparado ao tratamento com EMS 5 mM, $P \le 0.05$. ^bIncluindo manchas simples flr^3 raras. ^cForam considerados apenas os clones flr^3 raras. ^cForam considerados apenas flr^3 raras. ^cForam considerados apenas flr^3 raras. ^cForam considerados flr^3 raras flr^3

Tabela 3. Resultados obtidos no teste SMARTcom a progênie *mwh/flr*³ do cruzamento padrão após exposição aguda (3 h) de larvas de 3º estágio ao mutágeno EMS (46 mM), seguida do pós-tratamento com três concentrações de 3-ACQ e 5-ACQ.

Genótipos	Nº de	Manchas por indivíduo (nº de manchas) diag. estatístico a				
e Conc.	moscas.	MSP	MSG	MG	ТМ	_ manchas
(m M)	(N)	(1-2 céls) ^b	(>2 céls) ^b			mwh ^c
		m = 2	m=5	m = 5	m = 2	(n)
5-ACQ						
Controle negativo	30	0,40 (12)	0,03 (01)	0,03 (01)	0,47 (14)	14
EMS 46 mM	30	3,63 (109) *	5,93 (178) *	5,17 (155) *	14,73 (442) *	384
EMS 46 mM + 5-ACQ 200 μM	30	5,83 (175) f+	4,67 (140) f+	3,77 (113) f+	14,27 (428) -	397
EMS 46 mM + 5-ACQ 400 μM	30	5,70 (171) f+	3,57 (107) +	3,33 (100) f+	12,60 (378) f+	344
EMS 46 mM + 5-ACQ 800 μM	30	4,17 (125) -	3,60 (108) +	2,57 (77) +	10,33 (310) f+	275
3-ACQ						
Controle negativo	30	0,40 (12)	0,03 (01)	0,03 (01)	0,47 (14)	14
EMS 46 mM	30	3,63 (109) *	5,93 (178) *	5,17 (155) *	14,73 (442) *	384
EMS 46 mM + 3-ACQ 200 μM	30	6,90 (207) +	4,03 (121) f+	2,87 (86) +	13,80 (414) -	384
EMS 46 mM + 3-ACQ 400 μM	30	5,67 (170) f+	3,87 (116) f+	3,53 (106) f+	13,07 (392) f+	361
EMS 46 mM + 3-ACQ 800 μM	30	5,40 (162) f+	3,13 (94) +	2,97 (89) +	11,50 (345) f+	313

^aDiagnóstico estatístico de acordo com Frei e Würgler (1988): *, positivo quando comparado ao controle negativo; \neg , negativo; f+, fraco-positivo; +, positivo, quando comparado ao tratamento com EMS 46 mM, $P \le 0.05$. ^bIncluindo manchas simples flr^3 raras. ^cForam considerados apenas os clones mwh das manchas simples mwh e das manchas gêmeas.

REFERÊNCIAS BIBLIOGRÁFICAS

Andrade HHR, Reguly ML, Lehmann M. Wing Somatic Mutation and Recombination Test (SMART). In: Henderson DS

(ed). **Drosophila Cytogenetics Protocols**. Totowa: Human Press Inc., 2004: 389-412. Bhattacharyya S, Majhi S, Saha BP, et al. Chlorogenic acid-phospholipid complex improve protection against UVA

somatic cells of *Drosophila melanogaster*. **Pharm Biol.** 2011, 49:640-7.

induced oxidative stress. J Photochem Photobiol B. 2014 Jan 5;130:293-8. Frei H, Würgler FE. Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate

positive, negative or inconclusive result. **Mutat Res**. 1988, 203:297-308. Sortibrán ANC, Ordaz Téllez MG, Andrade-Cetto A, et al. Antimutagenic activity of two medicinal phytoextracts in