4° ENCONTRO ULBRA DE BOLSISTAS CNPq E FAPERGS

INVESTIGAÇÃO DA GENOTOXICIDADE DE NANOPARTÍCULAS DE ÓXIDO DE NÍQUEL EM Drosophila melanogaster

Lucas Petitemberte de Souza¹; Raíne Fogliati de Carli ²; Tatiane Rocha Cardozo³; Allan Seeber ⁴; Wladimir Hernandez Flores ⁴; Mauricio Lehmann⁵; Rafael Rodrigues Dihl⁶
Aluno do curso de graduação em Ciências Biológicas da ULBRA – Bolsista PIBITI/CNPq; Doutoranda do PPG em Biologia Celular e Molecular Aplicada à Saúde²; Doutora em Biologia Celular e
Molecular Aplicada à Saúde³; Professor da Universidade Federal do Pampa (UNIPAMPA) - Campus Bagé ⁴; Professor do curso de Engenharia Ambiental/ULBRA e do Programa de Pós-graduação em
Biologia Celular e Molecular Aplicada à Saúde/ULBRA ⁵; Professor Orientador dos cursos de Ciências Biológicas e Biomedicina/ULBRA e do Programa de Pós-graduação em Biologia Celular e
Molecular Aplicada à Saúde/ULBRA (rafael.rodrigues@ulbra.br) ⁶

Introdução

Os seres humanos têm sido expostos a nanopartículas transportadas pelo ar durante todo o seu período evolutivo. Essa exposição aumentou ao longo do século passado a medida que atividades antropogênicas ganhavam força. O termo nano refere-se à objetos e dispositivos cujas proporções físicas não excedam algumas dezenas de nanômetros. Esta nova ciência está associada à nanotecnologia, sendo caracterizada como um campo multidisciplinar importante, pois abrange áreas como física, química, biologia, farmácia, engenharia e até medicina, com ampla aplicabilidade na área econômica. Em relação às nanopartículas (NPs) de óxido de níquel (NiO), a principal via de exposição é a inalação, mas não descarta-se a ingestão ou absorção pela pele. Os principais alvos são os pulmões e os rins. Ao considerar a escassez de informações referentes à atividade genotóxica *in vivo* das NPs de NiO, somada a ausência de dados referentes às suas atividades mutagênicas e recombinogênicas, o presente estudo propõe-se à avaliar a atividade mutagênica e recombinogênica das NPs de NiO no Teste de Mutação e Recombinação Somática (SMART) em *Drosophila melanogaster*.

Metodologia

O teste para detecção de mutação e recombinação somática (SMART) é um método usado para a avaliação de recombinação somática, mutações gênicas e aberrações cromossomais causadas por deleções, translocações e não-disjunção de cromossomos, baseados na perda da heterozigosidade, em asas de $Drosophila\ melanogaster$. As alterações genéticas nas células podem ser identificadas fenotipicamente como uma mancha mutante na superfície da asa de um indivíduo adulto, que expressam os genes marcadores flr^3 ou mwh, responsáveis pelas mudanças na forma dos pelos ou tricomas.

Resultados

Tabela 1 – Resultados obtidos no SMART com a progênie trans-heterozigota (*mwh/flr3*) e heterozigota para o cromossomo TM3 (*mwh/TM3*) no cruzamento padrão (CP) após exposição crônica de larvas de 3º estágio a diferentes concentrações de NiO.

	Concentraçõe s e controles (mg/mL)	N° de moscas (N)	Manchas por mosca (n°. de manchas)/Diagnóstico estatístico a							
			Mancha simples pequenab (1-2 cél.) (m = 2)	Mancha simples grandes ^b (>2 cél.) (m = 5)	Mancha gêmea (m = 5)	Total de manchas (m = 2)	Total de manchas com clones mwh ^c (n)	Frequência de indução de manchas (por 10 ⁵ céls. por divisão celular) ^e (n/CN*	Recombinação (%)g	Mutação (%) ^g
mwh / flr³	СР	10	5.40 (54) +	0.70 (07) +	0.10 (01) i	6.20 (62) +	62	12.70 [11.31]		
	CN	50	0.58 (29)	0.10 (05)	0.00 (00)	0.68 (34)	34	1.39		
	1,31	50	1.10 (55) +	0.14 (07) i	0.02 (01) i	1.26 (63) +	63	2.58 [1.19]	106.90	-6.90
	2,62	50	1.00 (50) +	0.12 (06) i	0.06 (03) i	1.18 (59) +	59	2.42 [1.02]	120.00	-20.00
	5,25	50	1.12 (56) +	0.14 (07) i	0.10 (05) i	1.36 (68) +	68	2.79 [1.39]	97.06	2.94
	10,50	50	0.88 (44) i	0.10 (05) i	0.04 (02) i	1.02 (51) +	51	2.09 [0.70]	70.59	29.41
	21	50	0.92 (46) +	0.10 (05) i	0.04 (02) i	1.06 (53) +	53	2.17 [0.78]	57.89	42.11
mwh / TM3	CN	50	0.42 (21)	0.00 (00)	h	0.42 (21)	21	0.86		
	1,31	50	0.34 (17) -	0.04 (02) i		0.38 (19) -	19	0.78 [-0.08]		
	2,62	50	0.32 (16) -	0.00 (00) i		0.32(16) -	16	0.66 [-0.20]		
	5,25	50	0.44 (22) -	0.00 (00) i		0.44 (22) -	22	0.90 [0,04]		
	10,50	50	0.50 (25) i	0.02 (01) i		0.52 (26) -	26	1.07 [0.20]		
	21	50	0.52 (26) i	0.06 (03) i		0.58 (29) -	29	1.19 [0.33]		

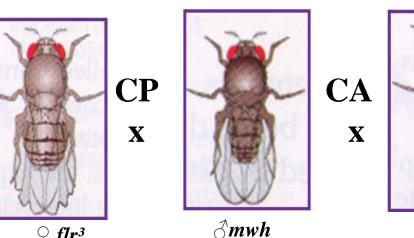

a Diagnóstico estatístico de acordo com Frei e Wurgler (1988): +, positivo; i, inconclusivo; -, negativo; m: fator de multiplicação; níveis de significância α = β = 0.05; b incluindo as manchas raras individuais flr³; considerando manchas mwh de simples mwh e manchas gêmeas; dnúmeros entre colchetes é a frequência de indução espotânea corrigida pela incidência estimada do controle negativo; epara o cálculo ver Andrade et al. (2004); fC=48.800, i.e., número aproximado de células analisadas por mosca; gPorcentagem de recombinação (R) foi calculado de acordo com Frei e Würgler (1996): R = 1-[(n/CN* em moscas mwh/TM3)/(n/CN* em moscas mwh/flr³)] * 100; hApenas manchas simples mwh podem ser observadas em heterozigotos mwh/TM3 já que o cromossomo balanceador TM3 não contém o gene mutante flr³. Frequência de controle corrigida foi usada para estes cálculos. CN = Controle Negativo utilizado: água destilada. CP= Controle Positivo usado: Uretano 20 mM.

Tabela 2 – Resultados obtidos no teste SMART com a progênie trans-heterozigota (*mwh/flr3*) e heterozigota para o cromossomo TM3 no cruzamento aprimorado (CA) após exposição crônica de larvas de 3º estágio as diferentes concentrações de NiO.

Genótipos	Concentraçõe s e controles (mg/mL)	N° de mosca s (N)	Manchas por mosca (n°. de manchas)/Diagnóstico estatístico a							
			Mancha simples pequena ^b (1- 2 cél.) (m = 2)	Mancha simples grandes ^b (>2 cél.) (m = 5)	Mancha gêmea (m = 5)	Total de manchas (m = 2)	Total de mancha s com clones mwh ^c (n)	Frequência de indução de manchas (por 10 ⁵ céls. por divisão celular) ^e (n/CN*)	Recombinação (%)g	Mutação (%) ^g
mwh / flr³	СР	10	23.40 (234)	8.30 (83) +	5.40 (54)	37.10 (371) +	365	74.80 [72.66]		
	CN	50	0.98 (49)	0.08 (04)	0.02 (01)	1.08 (54)	52	2.13		
	1,31	60	1.33 (80) -	0.08 (05) i	0.03 (02) i	1.45 (87) -	87	2.97 [0.84]		
	2,62	60	1.27 (76) -	0.07 (04) i	0.08 (05) i	1.42 (85) -	85	2.90 [0.77]		
	5,25	60	1.37 (82) f+	0.10 (06) i	0.07 (04) i	1.53 (92) -	91	3.11 [0.98]		
	10,50	60	1.23 (74) -	0.10 (06) i	0.08 (05) i	1.42 (85) -	85	2.90 [0.77]		
	21	50	1.56 (78) +	0.12 (06) i	0.02 (01) i	1.70 (85) +	85	3.48 [1.35]	84.85	15.15
mwh / TM3	CN	50	1.12 (56)	0.06 (03)	h	1.18 (59)	59	2.42		
	21	50	1.26 (63) -	0.02 (01) i		1.28 (64) -	64	2.62 [0.20]		

a Diagnóstico estatístico de acordo com Frei e Wurgler (1988): +, positivo; i, inconclusivo; -, negativo; m: fator de multiplicação; níveis de significância α = β = 0.05; b incluindo as manchas raras individuais flr³; considerando manchas mwh de simples mwh e manchas gêmeas; d números entre colchetes é a frequência de indução espotânea corrigida pela incidência estimada do controle negativo; epara o cálculo ver Andrade et al. (2004); fC=48.800, i.e., número aproximado de células analisadas por mosca; gPorcentagem de recombinação (R) foi calculado de acordo com Frei e Würgler (1996): R = 1-[(n/CN* em moscas mwh/TM3)/(n/CN* em moscas mwh/flr³)] * 100; hApenas manchas simples mwh podem ser observadas em heterozigotos mwh/TM3 já que o cromossomo balanceador TM3 não contém o gene mutante flr³. Frequência de controle corrigida foi usada para estes cálculos. CN = Controle Negativo utilizado: água destilada. CP= Controle Positivo usado: Uretano 20 mM.

Cruzamentos

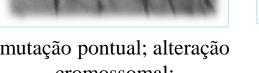
∂mwh ♀ ORR;flr³

Moscas adultas;

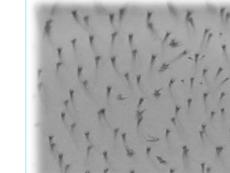
↓
microscópica dos pelos;

Análise microscópica dos pelos;

Indução de dano no DNA;


Mutações pontuais

Concentrações


- \rightarrow 1,31 mg/mL; \rightarrow 2,62 mg/mL; \rightarrow 5,25 mg/mL; \rightarrow 10,5 mg/mL; \rightarrow 21 mg/mL;
- → Controle negativo (água destilada)

→ Controle positivo (uretano 20mM)

recombinação somática

recombinação

Discussão

Na literatura, não há dados, até o presente estudo, sobre a avaliação da genotoxicidade *in vivo* das NPs de NiO. Contudo, outros dados semelhantes têm sido relatados utilizando o teste SMART. Em um estudo realizado com a NP de Ag, foi possível observar resultados positivos no CP em concentrações que variaram de 1-10 mM. Com NPs de Co obteve-se resultados semelhantes, observados no mesmo cruzamento, nas concentrações de 5 e 10 mM. No CA, NPs de óxido de zinco (ZnO) também apresentaram aumento na indução de clones mutantes na concentração de 12,5 mM.

Considerações Finais

O teste demonstrou-se eficiente na detecção de NPs de NiO como potencial genotoxina. Entretanto, a avaliação de diferentes parâmetros genéticos, utilizando diferentes bioensaios, faz-se necessária para caracterizar o perfil mutagênico das NPs de NiO.

Referências

ANDRADE, R.; REGULY L.; Lehmann M. Wing Somatic Mutation and Recombination Test (SMART). In: Henderson, DS (Ed.), Drosophila Cytogenetics Protocols, Humana Press Inc. Totowa, p.389-412, 2004.

FERNANDES, M. F. M.; FIGUEIRAS, C. A. L. Um panorama da nanotecnologia no Brasil (e seus macro-desafios). Química Nova, v. 31, p. 2205-13, 2008.

MAGAYE, R.; ZHAO, J.; BOWMAN, L.; DING, M. Genotoxicity and carcinogenicity of cobalt, nickel and copper based nanoparticles (review). Experimental and therapeutic medicine, v. 4, p. 551-61, 2012.

MELO, C. P.; PIMENTA, M. Nanociências e nanotecnologia. Parcerias Estratégicas, p. 18:21, 2004.

OBERDÖRSTER, G.; OBERDÖRSTE, E.; OBERDÖRSTE, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, v.113, p. 823–39, 2005.

Apoio Financeiro

FAPERGS

